

NFIQ 2.0 – Features for fingerprint quality determination

Martin A. Olsen

Norwegian University of Science and Technology (NTNU)

NIST, Gaithersburg, MD May 4, 2016

Outline

Introduction

NFIQ 2.0 Quality features
Quality features
Two ground-truth classes

Quality feature example - frequency domain analysis

Actionable feedback

Speeding up NFIQ 2.0

NFIQ 2.0 and WSQ compression

Alignment with international standard

Contact & further information

- Starting point for features
 - ► NFIQ 1.0
 - ▶ ISO/IEC TR 29794-4:2010
 - Literature

- Starting point for features
 - NFIQ 1.0
 - ISO/IEC TR 29794-4:2010
 - Literature
- Implementation of prototype features
- Hundreds of variations of features; parameter configurations and variations in algorithm steps

- Starting point for features
 - NFIQ 1.0
 - ISO/IEC TR 29794-4:2010
 - Literature
- Implementation of prototype features
- Hundreds of variations of features; parameter configurations and variations in algorithm steps
- Iterative development to arrive at NFIQ 2.0 feature vector

- Starting point for features
 - NFIQ 1.0
 - ISO/IEC TR 29794-4:2010
 - Literature
- Implementation of prototype features
- Hundreds of variations of features; parameter configurations and variations in algorithm steps
- Iterative development to arrive at NFIQ 2.0 feature vector
- Prioritize predictive power and speed of computation

- Starting point for features
 - NFIQ 1.0
 - ISO/IEC TR 29794-4:2010
 - Literature
- Implementation of prototype features
- Hundreds of variations of features; parameter configurations and variations in algorithm steps
- Iterative development to arrive at NFIQ 2.0 feature vector
- Prioritize predictive power and speed of computation
- Workshops central to development of features

- NFIQ 2.0 is a classifier ⇒features form the basis for prediction
- Selecting features
 - Speed of computation
 - Contribution to predictive performance

- NFIQ 2.0 is a classifier ⇒features form the basis for prediction
- Selecting features
 - Speed of computation
 - Contribution to predictive performance

$$\begin{split} \mathbf{Q}_{\text{NFIQ 2.0}} &= \left(Q_{\text{FDA}}^{\mu}, Q_{\text{LCS}}^{\mu}, Q_{\text{OCL}}^{\mu}, Q_{\text{OFL}}^{\mu}, Q_{\text{RVU}}^{\mu}, \right. \\ &\left. Q_{\text{FDA}}^{\sigma}, Q_{\text{LCS}}^{\sigma}, Q_{\text{OCL}}^{\sigma}, Q_{\text{OFL}}^{\sigma}, Q_{\text{RVU}}^{\sigma}, \right. \\ &\left. \mathbf{Q}_{\text{FDA}}, \mathbf{Q}_{\text{LCS}}, \mathbf{Q}_{\text{OCL}}, \mathbf{Q}_{\text{OFL}}, \mathbf{Q}_{\text{RVU}}, \right. \\ &\left. Q_{\text{MU}}, Q_{\text{MMB}}, Q_{\text{COH}}^{rel}, Q_{\text{COH}}^{sum}, Q_{\text{AREA}}^{\mu}, \right. \\ &\left. Q_{\text{MIN}}^{cnt}, Q_{\text{MIN}}^{com}, Q_{\text{MIN}}^{mu}, Q_{\text{MIN}}^{ocl} \right). \end{split}$$

Global – minutiae count, orientation coherence, . . .

- Global minutiae count, orientation coherence, . . .
- Local orientation certainty, frequency analysis, . . .

- Global minutiae count, orientation coherence, . . .
- Local orientation certainty, frequency analysis, . . .
- Local quality at minutiae locations
- Mean and standard deviation of local features
- Histogram of local features (boundaries determined from CDF)

- Global minutiae count, orientation coherence, . . .
- Local orientation certainty, frequency analysis, . . .
- Local quality at minutiae locations
- Mean and standard deviation of local features
- Histogram of local features (boundaries determined from CDF)
- Classifier
 - Random Forest trained for binary classification
 - Input: 69 dimensional feature vector
 - Output: probability of input being Class 1 (high utility) quantized [1, 100]

da/sec BIOMETRICS AND INTERNET-SECURITY NFIQ 2.0 Quality features RESEARCH GROUP

Name	Capture	Type	Number of	Fingers	Number of	Used for
	mode		subjects		comparisons per finger	
AZLA	Scanned ink	Operational	240,000	Index and Thumb	120,000 mated. 120,000 non-mated	training + testing
POEBVA	Live scan	Operational	180,000	Index	120,000 mated. 120,000 non-mated	training + testing
VISITIDF	Live scan	Operational	220,000	Index and Thumb	95,000 mated. 120,000 non-mated	training + testing
DHS2	Live scan	Operational	180,000	Index	120,000 mated. 120,000 non-mated	training + testing
IQMI	Scanned ink	Operational	250,000	10 fingers	250,000 mated. 250,000 non-mated	testing
BKA	Live scan	Operational	342,000 images	10 fingers	_	testing
BKA	+ Scanned ink					
SD 29	Scanned ink	Public	209	10 fingers	1912 mated. 35,791 non-mated	testing
FVC 2000 DB1	Live scan	Public	110	8 fingers	_	compliance testing
FVC 2000 DB3	Live scan	Public	110	8 fingers	_	compliance testing
FVC 2002 DB1	Live scan	Public	110	8 fingers	_	compliance testing

Data from operational sources (Optical sensors)

BIOMETRICS AND INTERNET-SECURITY NFIQ 2.0 Quality features

Name	Capture	Туре	Number of	Fingers	Number of	Used for
	mode		subjects		comparisons per finger	
AZLA	Scanned ink	Operational	240,000	Index and Thumb	120,000 mated. 120,000 non-mated	training + testing
POEBVA	Live scan	Operational	180,000	Index	120,000 mated. 120,000 non-mated	training + testing
VISITIDF	Live scan	Operational	220,000	Index and Thumb	95,000 mated. 120,000 non-mated	training + testing
DHS2	Live scan	Operational	180,000	Index	120,000 mated. 120,000 non-mated	training + testing
IQMI	Scanned ink	Operational	250,000	10 fingers	250,000 mated. 250,000 non-mated	testing
BKA	Live scan	Operational	342,000 images	10 fingers	_	testing
BKA	+ Scanned ink					
SD 29	Scanned ink	Public	209	10 fingers	1912 mated. 35,791 non-mated	testing
FVC 2000 DB1	Live scan	Public	110	8 fingers	_	compliance testing
FVC 2000 DB3	Live scan	Public	110	8 fingers	_	compliance testing
FVC 2002 DB1	Live scan	Public	110	8 fingers	_	compliance testing

- Data from operational sources (Optical sensors)
- Training set 6629 images (3295 in Class 0 and 3334 in Class 1)
- Validation set 99797 randomly selected images
- External validation on BKA data and FBI data

Criteria for two classes of samples in training

da/sec BIOMETRICS AND INTERNET-SECURITY NFIQ 2.0 Quality features RESEARCH GROUP

- Criteria for two classes of samples in training
 - 1 NFIQ=1 ($S_{act} > 0.7$) and S_{gen} in 90th percentile
 - 0 NFIQ=5 ($S_{act} > 0.9$) and $S_{gen} < t$ at FMR = 10^-4

- Criteria for two classes of samples in training
 - 1 NFIQ=1 ($S_{act} > 0.7$) and S_{gen} in 90th percentile
- 0 NFIQ=5 ($S_{act} > 0.9$) and $S_{gen} < t$ at FMR = 10^-4
- Manual validation of images in each class

BIOMETRICS AND INTERNET-SECURITY NFIQ 2.0 Quality features RESEARCH GROUP

- Criteria for two classes of samples in training
 - 1 NFIQ=1 ($S_{act} > 0.7$) and S_{gen} in 90th percentile
 - 0 NFIQ=5 ($S_{act} > 0.9$) and $S_{qen} < t$ at FMR = 10^-4
- Manual validation of images in each class

da/sec BIOMETRICS AND INTERNET-SECURITY NFIQ 2.0 Quality features RESEARCH GROUP

Feature importance ranking

	Name	MeanDreaseGini
Q_{FDA}^{σ}	Frequency Domain Analysis_Standard Deviation	140.760
$Q_{ m MIN}^{com}$	FingerJet FX OSE COM Minutiae Count	92.089
Q_{MIN}^{ocl}	FingerJet FX OSE OCL MinutiaeQuality	83.027
$Q_{ ext{RVU}}^{\mu}$	Ridge Valley Uniformity_Mean	69.517
Q^{μ}_{FDA}	Frequency Domain Analysis_Mean	62.229
Q_{MIN}^{cnt}	FingerJet FX OSE Total Minutiae Count	57.565
$Q_{ ext{RVU}}^{\sigma}$	Ridge Valley Uniformity_Standard Deviation	50.946
$Q_{ ext{RVU}}^{\sigma}$ $Q_{ ext{LCS}}^{7}$ $Q_{ ext{LCS}}^{7}$ $Q_{ ext{LCS}}^{8}$ $Q_{ ext{FDA}}^{9}$	Local Clarity Score_Bin_7	50.688
$Q_{ m LCS}^8$	Local Clarity Score_Bin_8	50.100
Q_{FDA}^9	Frequency Domain Analysis_Bin_9	47.844
$Q_{\rm COH}^{sum}$	ROI Orientation Map Coherence Sum	38.104
$Q_{ m OFL}^2$	Orientation Flow_Bin_2	37.172
Q_{LCS}^{μ}	Local Clarity Score_Mean	36.483
$Q_{ ext{COH}}^{ ext{FDA}}$ $Q_{ ext{COH}}^{ ext{2}}$ $Q_{ ext{CFL}}^{ ext{2}}$ $Q_{ ext{LCS}}^{ ext{5}}$ $Q_{ ext{RVU}}^{ ext{5}}$ $Q_{ ext{RVU}}^{ ext{3}}$	Ridge Valley Uniformity_Bin_5	35.617
$Q_{ m RVII}^3$	Ridge Valley Uniformity_Bin_3	35.139
$Q^{\mu}_{ ext{AREA}}$	ROI Area Mean	34.932
$Q_{\rm OFL}^1$	Orientation Flow_Bin_1	33.751
$Q_{ ext{AREA}}^{\mu} \ Q_{ ext{OFL}}^{1} \ Q_{ ext{OFL}}^{0}$	Orientation Flow_Bin_0	33.513
Q_{MU}	MU	32.914

10 end

Quality feature example - frequency domain analysis

► Q_{FDA} local determination of ridge-valley signature

Algorithm 3: fda algorithm

```
Input: Fingerprint image I

Output: fda quality score Q<sub>FDA</sub>

1 for each block V in I do

2 | pad V with 2 pixel around border

3 | rotate V with nearest neighbour interpolation such that dominant ridge flow is perpendicular to x-axis

4 | crop V such that no invalid regions are included

5 | with V obtain the ridge-valley signature T (eq. (11))

6 | compute the dft of T to obtain the magnitude representation A

7 | discard the first component of A

8 | determine F<sub>max</sub> as the index of the largest magnitude in A

9 | compute Q<sub>logical</sub> of V using A and F<sub>max</sub> (eq. (12))
```


$$\begin{split} B_{\text{FDA}} = \{\, -\infty, 0.26800, 0.30400, 0.33000, 0.35500, \\ 0.38000, 0.40700, 0.44000, 0.50000, 1.00000, \infty \} \,. \end{split}$$

$$B_{\text{FDA}} = \{ -\infty, 0.26800, 0.30400, 0.33000, 0.35500, \\ 0.38000, 0.40700, 0.44000, 0.50000, 1.00000, \infty \}.$$

- ▶ Local quality values ⇒fixed length feature vector
- Mean, std.dev., 10 bin histogram ⇒12-dimension feature vector

$$B_{\text{FDA}} = \{ -\infty, 0.26800, 0.30400, 0.33000, 0.35500, 0.38000, 0.40700, 0.44000, 0.50000, 1.00000, \infty \}.$$

- ► Local quality values ⇒fixed length feature vector
- Mean, std.dev., 10 bin histogram ⇒12-dimension feature vector

 $Q_{\text{FDA}}: \left\{Q_{\text{FDA}}^{\mu}, Q_{\text{FDA}}^{\sigma}, Q_{\text{FDA}}^{1}, \dots, Q_{\text{FDA}}^{10}\right\}$ NFIQ 2.0 - Features / NIST, Gaithersburg, MD, May 4, 2016

High

$\frac{\text{da/sec}}{\text{BIOMETRIGS AND INTERNET-SECURITY}}$ Speeding up NFIQ 2.0

Request ⇒near frame rate quality assessment (10 Hz)

da/sec BIOMETRICS AND INTERNET-SECURITY Speeding up NFIQ 2.0 RESEARCH GROUP

- Request ⇒near frame rate quality assessment (10 Hz)
- Slap sensors provide large finger images

 800×750 pixel sensor output reproduced at 25% scale

da/sec BIOMETRICS AND INTERNET-SECURITY Speeding up NFIQ 2.0 RESEARCH GROUP

- Request ⇒near frame rate quality assessment (10 Hz)
- Slap sensors provide large finger images
- Removal of near constant area
- No processing of background area blocks

 800×750 pixel sensor output reproduced at 25% scale

BIOMETRICS AND INTERNET-SECURITY Speeding up NFIQ 2.0

- Request ⇒near frame rate quality assessment (10 Hz)
- Slap sensors provide large finger images
- Removal of near constant area
- No processing of background area blocks
- Avoid removing low quality fingerprint areas

 800×750 pixel sensor output reproduced at 25% scale

da/sec BIOMETRICS AND INTERNET-SECURITY Speeding up NFIQ 2.0

 $330 \times 286 = 94380$ (15.7%)

da/sec BIOMETRICS AND INTERNET-SECURITY Speeding up NFIQ 2.0 RESEARCH GROUP

 $330 \times 286 = 94380$ (15.7%)

 $330 \times 286 - (10 \times (32 \times 32)) = 84140$ (13.9%)

- Demand for actionable feedback from quality algorithm
- More than a quality score helps to answer the why
- ▶ Provide information ⇒improve quality at recapture

- Demand for actionable feedback from quality algorithm
- More than a quality score helps to answer the why
- ▶ Provide information ⇒improve quality at recapture
- ► Finger image receives low quality score why?

- Demand for actionable feedback from quality algorithm
- More than a quality score helps to answer the why
- ▶ Provide information ⇒improve quality at recapture
- Finger image receives low quality score why?
 - Unintended interaction with sensor
 - Pre-processing error, e.g. segmentation
 - Sensor failure

- Demand for actionable feedback from quality algorithm
- More than a quality score helps to answer the why
- ▶ Provide information ⇒improve quality at recapture
- Finger image receives low quality score why?
 - Unintended interaction with sensor
 - Pre-processing error, e.g. segmentation
 - Sensor failure
- ▶ NFIQ 2.0 research kit offers actionable feedback

- Demand for actionable feedback from quality algorithm
- More than a quality score helps to answer the why
- ▶ Provide information ⇒improve quality at recapture
- Finger image receives low quality score why?
 - Unintended interaction with sensor
 - ► Pre-processing error, e.g. segmentation
 - Sensor failure
- ▶ NFIQ 2.0 research kit offers actionable feedback
 - empty image ($\mu > 250$)
 - uniform image pixel intensity ($\sigma = 1.0$)
 - no or few minutiae detected $(N_{min} < 5)$
 - small foreground area ($N_{farnd} < 50000$)

 $\mu > 250$ uniform image intensity $\sigma = 1.0$ empty image few minutiae $N_{min} < 5$ | small foreground $N_{fgrnd} < 50000$

NFIQ 2.0 = 89 $\mu = 177$

$$\sigma = 99$$

$$N_{\it min}=60$$

 $N_{fgrnd} = 117337$

empty image
$$\mu > 250$$
 uniform image intensity few minutiae $N_{min} < 5$ small foreground

NFIQ
$$2.0 = 21$$
 $\mu = 220$
 $\sigma = 64$
 $N_{min} = 40$

 $1 N_{fgrnd} = 36887$

$$\begin{array}{lll} \mbox{empty image} & \mu > 250 & \mbox{uniform image intensity} & \sigma = 1.0 \\ \mbox{few minutiae} & N_{\textit{min}} < 5 & \mbox{small foreground} & N_{\textit{fgrnd}} < 50000 \end{array}$$

$$\sigma = 1.0$$

$$N_{\mathit{fgrnd}} < 50000$$

NFIQ
$$2.0 = 1$$
 $\mu = 196$
 $\sigma = 79$

1 $N_{min} = 0$

1 $N_{fgrnd} = 16262$

 Deviation between uncompressed and WSQ compressed (factor 8). 1000 images, MCYT 330 DP.

 Fingerprint boundary artifact at WSQ compression (factor 8). Gamma adjusted.

NFIQ 2.0 and WSQ compression

$\begin{array}{l} \text{da/sec} \\ \text{BIONETRICS AND INTERNET-SECURITY} \end{array} \ \, \begin{array}{l} \text{Alignment with international standard} \\ \end{array}$

Standardization of features a priority throughout NFIQ 2.0 development

BIOMETRICS AND INTERNET-SECURITY Alignment with international standard

- Standardization of features a priority throughout NFIQ 2.0 development
- 29794-4 biometric sample quality finger image data
 - current status is 3rd Committee Draft
 - progression to Draft International Standard in May 2016
 - projected release as International Standard in 2017

First And Internet-security Alignment with international standard

- Standardization of features a priority throughout NFIQ 2.0 development
- 29794-4 biometric sample quality finger image data
 - current status is 3rd Committee Draft
 - progression to Draft International Standard in May 2016
 - projected release as International Standard in 2017
- NFIQ 2.0 effectively a reference implementation of 29794-4 at this point
 - Open source, publicly available

ND INTERNET-SECURITY Contact & further information

Thanks for your attention

Martin A. Olsen
Contact: martin.olsen@{cased.de; ntnu.no}

NFIQ 2.0 nist.gov/itl/iad/ig/development_nfiq_2.cfm

Prototype quality features share.nbl.nislab.no/public